

Vermeiden - vermindern - kompensieren ist die Kurzformel für klimaneutrales Vorgehen.

Treibhausgas -Bilanz der Stadt Mülheim an der Ruhr- Bilanzjahr 2018

Impressum

Herausgeber: Stadt Mülheim an der Ruhr

Der Oberbürgermeister

Erstellung: Stabsstelle Klimaschutz und Klimaanpassung

Dezernat Umwelt, Planen und Bauen

Januar 2021

Kontakt: Stadt Mülheim an der Ruhr

Hans-Böckler-Platz 5

45468 Mülheim an der Ruhr

Ulrike Marx

Tel. 0208/455 6815

E-Mail: ulrike.marx@muelheim-ruhr.de

Hinweis: Der Bericht wurde in Anlehnung an den Musterbericht der Energieagentur NRW erstellt.

Inhalt

1.	Überblick	6
2.	Ausgangssituation und Rahmenbedingungen	7
	2.1 Lage der Stadt Mülheim an der Ruhr	7
	2.2 Einwohnerzahl und Entwicklung	7
	2.3 Wirtschaftsstruktur	8
	2.4 Verkehrssituation und Beschreibung	8
	2.5 Klimaschutzaktivitäten und Zielsetzungen	9
3.	Anlass und Ziel der Fortschreibung der Treibhausgasbilanz	12
4.	Methodische Grundlagen der Bilanzierung	13
	4.1 Das Bilanzierungstool	14
	4.2 Datenquellen	16
	Verkehrsbilanzierung	18
	Die Datengüte	20
5.	Energiebilanz	22
	A. Stationäre Bilanz	22
	B. Energiebilanz des Verkehrs	24
6.	Treibhausgasbilanz	27
7.	Zusammenfassung der Bilanzergebnisse	29
ጸ	Fazit und Aushlick	31

Abbildungsverzeichnis

Abbildung 1 Mülheimer Stadtentwicklungsperspektiven 10
Abbildung 2 Emissionsfaktoren Klimaschutz-Planer 2018
Abbildung 3 Bilanzierungssystematik Verkehr nach Ifeu 2013
Abbildung 4 Treibhausgasemiassionen 1990-2018 mit Datengüte21
Abbildung 5 Energieverbrauch-sektoral 2012-201822
Abbildung 6 Endenergieverbrauch 2018 -sektoral23
Abbildung 7 Endenergieverbrauch nach Energieträgern 2012-201823
Abbildung 8 Bilanzen Verkehr nach Verkehrsmitteln 2012-201824
Abbildung 9 Bilanzen Verkehr nach Energieträger 2012-201825
Abbildung 10 Kraftfahrzeugbestand in Mülheim an der Ruhr 2012-2019 25
Abbildung 11 Verkehrsmittelwahl der Mülheimer Bevölkerung 2012/2019 26
Abbildung 12 Elektromobilität Mülheim an der Ruhr 2006-201926
Abbildung 13 Treibhausgasemissionen Mülheim an der Ruhr 2012-2018 27
Abbildung 14 Treibhausgasemissionen aus Strom in Mülheim an der Ruhr 2012-2018 27
Abbildung 15 Entwicklung der Treibhausgasemissionen pro Einwohner 2012-2018 29
Abbildung 16 Entwicklung der Treibhausgasemissionen-Sektoral 2012-2018 29
Abbildung 17 Beiträge der Sektoren an Treibhausgasminderung 2012-2018 30
Abbildung 18 Bezugsdaten Westenergie AG und verschiedene Erzeuger ohne EEG
Abbildung 19 Treibhausgasemissionen Mülheim sn der Ruhr- Startbilanz 1990-Ziel 2035, 32

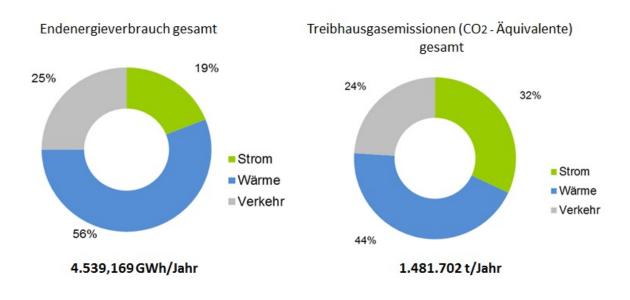
Tabellenverzeichnis

Tabelle 1 Erläuterung Sektoren	15
Tabelle 2 Übersicht der relevanten Energieträger	16
Tabelle 3 Bilanzierungsdaten und Quellen	17
Tabelle 4 Verkehrsmittel mit verwendeter Datenherkunft	20
Tabelle 5 Verkehrsträger- Daten und Quellen	20
Tabelle 6 Einteilung der Datengüte	20
Tabelle 8 Endenergieverbrauch nach Energieträgern 2012-2018	24
Tabelle 9 Gesamtenergieverbrauch- Verkehr 2012-2018	25
Tabelle 10 Treibhausgasemissionen -Energieträger 2012-2018	28

1. Überblick

Bilanzjahr: 2018

Festgelegte Ziele


Einwohnerzahl: 172.740

Klima-Bündnis-Beitrittsjahr 1992

Konvent der Bürgermeister- Beitrittsjahr 2016

Klimanotlage/Climate Emergency -Beschluss
 2020

Das Wichtigste im Überblick

Energieverbrauch Private Haushalte 2018

Gesamttreibhausgasemissionen 2018

8.509,1 kWh/EW

8,6 t/EW

Erneuerbare Energien Strom 2018

Erneuerbare Energien Wärme 2018

9,4%

3,4%

2. Ausgangssituation und Rahmenbedingungen

2.1 Lage der Stadt Mülheim an der Ruhr

Die Stadt Mülheim an der Ruhr im westlichen Ruhrgebiet zählt die Städte Duisburg, Essen, Oberhausen, den Kreis Mettmann zu ihren Nachbarn. Sie ist eingebunden in eine Vielzahl von Netzwerken und Verbünden wie den Regionalverband Ruhr, die Städteregion Ruhr 2030 mit dem gemeinsamen Flächennutzungsplan sowie den Verkehrsverbund Rhein-Ruhr.

Das Stadtgebiet dehnt sich in Nord-Süd-Richtung 13,4 Kilometer sowie in West-Ost-Richtung 10,7 Kilometer aus. Der höchste Punkt im Stadtgebiet liegt auf 152,7 Meter über NHN im Stadtteil Menden-Holthausen. der niedrigste Punkt liegt bei 26,0 Meter über NHN im Stadtteil Styrum.

Die Flächengröße des Stadtgebietes beträgt insgesamt 9.129 ha, davon entfallen 2.905 ha auf Gebäude- und Freiflächen, 1.030 ha Verkehrsflächen, 2.627 ha Wald und Grünanlagen sowie 2.126 ha auf landwirtschaftliche Flächen. Die größten Waldgebiete und Freiräume befinden sich im Süden und Südwesten des Stadtgebietes. Westlich des Stadtgebiets fließt der Rhein nach Norden. In ihm mündet die Ruhr. Mülheim ist geprägt von der Ruhr, welche von Südosten nach Nordwesten auf einer Länge von 14 km durch das Stadtgebiet fließt. Die "Stadt am Fluss" gilt mit über 50 Prozent Grün- und Waldflächen als ein attraktiver Wohnort.

2.2 Einwohnerzahl und Entwicklung

Die Einwohnerzahl der Stadt Mülheim an der Ruhr betrug Ende des Jahres 2020 172.776 Einwohner. Nach einem leichten Bevölkerungsrückgang in den Jahren 2018 und 2019 stieg die Einwohnerzahl im Laufe des Jahres 2020 um 0,2 Prozent. Über mehrere Jahrzehnte hinweg, hatte sich Bevölkerung seit Anfang der 1970-iger Jahre bis in das Jahr 2011 um etwa 24.000 Einwohner reduziert. Die Bevölkerungsprognose des Jahres 2011 entspricht nach Angaben des städtischen Fachbereiches Stadtforschung und Statistik seit dem Jahr 2013 nicht mehr den Vorausberechnungen der Vergangenheit.

Entgegen allen Vorhersagen hat sich der Einwohnerverlust in Mülheim nicht fortgesetzt, sondern nach einer Stabilisierung im Jahre 2013 in den Jahren 2014 bis 2017 sogar in einen deutlichen Zuwachs umgekehrt. Seither steigt die Zahl der Einwohner durch Zuzug wieder an. Besonders hervorzuheben ist die Anzahl der ausländischen Zugezogenen, die sich seit 2011 verdoppelt hat. Ein Einflussfaktor hierfür ist der Zuzug von Menschen mit Fluchthintergrund. Nach Einschätzung des Landesbetriebes Information und Technik Nordrhein-Westfalen (IT.NRW) vom Dezember 2018 liegt die Prognose für Mülheim an der Ruhr bei etwa 171.000 Einwohnerinnen und Einwohner im Jahr 2025.

Die Bevölkerungsdichte ist in den neun Mülheimer Stadtteilen sehr unterschiedlich verteilt und hat eine Spannbreite von 7,8 EW/ha in Menden-Holthausen bis zu 66,1 EW/ha in Alt-

stadt I. Die höchsten Einwohnerdichten bestehen in der Innenstadt sowie im Norden der Stadt

2.3 Wirtschaftsstruktur

Eine vielfältige Gewerbestruktur mit Dienstleistung, Handel, einer starken Industrieproduktion sowie verarbeitendem Gewerbe prägt die Stadt Mülheim an der Ruhr. Grundpfeiler sind Turbinen- und Generatorenbau, Röhrenherstellung, Handel und unternehmensbezogene Dienstleistungen – Industrieunternehmen wie Siemens, Salzgitter Mannesmann Grobblech, Vallourec-Mannesmann, Europipe und die Friedrich-Wilhelms-Hütte. Forschungseinrichtungen wie die Max-Planck-Institute für Kohlenforschung und Bioanorganische Chemie
und für chemische Energiekonversion sind in Mülheim ansässig. Seit einigen Jahren ist Mülheim an der Ruhr Standort der Hochschule Ruhr West. Daneben haben große Handelskonzerne wie Aldi hier ihren Sitz.

Nach Angaben der Wirtschaftsförderung¹ Mülheim an der Ruhr sind rund 5.700 Unternehmen mit rund 59.900 Beschäftigten im Stadtgebiet ansässig und erwirtschaften 5.085 Mio. € Bruttowertschöpfung. Neben den großen Industrie- und Gewerbeflächen im Zentrum von Mülheim prägen zahlreiche ehemalige Werkssiedlungen mit Geschosswohnungsbau sowie 1- und 2-Familien-Haus-Siedlungen der 1930er- bis frühen 1960er-Jahre das Stadtbild. Im Rahmen von Stadterneuerungsprojekten sind neben energetischen Aspekten Denkmalschutz und stadtbildprägende Gebäude und Siedlungen ein Kernthema, wie z.B. in den Bereichen Saliersiedlung, Papenbusch oder Heimaterde.

2.4 Verkehrssituation und Beschreibung

Die Verkehrsinfrastruktur in Mülheim an der Ruhr muss im regionalen Verbund des Rhein-Ruhr-Ballungsraumes analysiert werden. Die Verflechtungen sind vielfältig und die Abhängigkeiten groß. Für sich betrachtet erscheint die Mülheimer Verkehrsstruktur eher klassisch. Den Stadtraum schneidet eine Hauptfernbahnstrecke, drei Autobahntrassen umgeben ihn und mehrere Bundestraßen kreuzen ihn. Die Ruhr fließt in Süd-Nord-Richtung, sie ist keine Wasserstraße, sondern eher ein Verkehrshindernis, das über vier innerstätische Ruhrbrücken und zwei Autobahnbrücken überwunden werden muss, die den westlichen und östlichen Raum verbinden. Der Flughafen Essen/Mülheim bietet eine Anbindung an die Luftfahrt.

Das Straßennetz umfasst ohne Autobahnen 525 km und 116 Brücken und kann, abgesehen vom Zustand der Straßen, hinsichtlich seiner Erschließungsqualität als gut bis sehr gut bezeichnet werden.

-

¹ vgl. https://www.muelheim-business.de/wirtschaftsstandort/

Der Hauptbahnhof Mülheim an der Ruhr ist Anlaufstelle mehrerer Regional-Express, Regionalbahn- und S-Bahn-Linien sowie einiger IC/EC-Fernverkehrszüge. Diese verkehren in Richtung Rheinschiene, dem Niederrhein, dem östlichen Ruhrgebiet und Westfalen. Der Personennahverkehr wird in Mülheim von einem Netz aus Stadtbahnen, Straßenbahnen und Stadtbuslinien gebildet. Es bestehen sehr gute Verbindungen nach Essen, Duisburg und Oberhausen. Das südlich angrenzende Ratingen ist über Buslinien angebunden.

Seit dem Jahr 1999 ist die Stadt Mülheim an der Ruhr Mitglied der Arbeitsgemeinschaft fußgänger- und fahrradfreundliche Städte, Gemeinden und Kreise e.V. (AGFS) in NRW. Dies verdeutlicht das Bestreben die Nahmobilität zu stärken und die Rahmenbedingungen für den Rad- und Fußverkehr zu optimieren. Für den Alltagsverkehr wurden seit dem Jahr 2016 mehrere Teilabschnitte des Radschnellweges RS1 freigegeben. Dieser verbindet die Stadt Essen mit dem Hauptbahnhof Mülheim und der Hochschule Ruhr West.

Der Mülheimer Rhein-Ruhr Hafen ist über die untere Ruhr mit den Duisburg-Ruhrorter Häfen, dem Rhein-Herne Kanal und dem Rhein verbunden.

Nach einer aktuellen Befragung der Mülheimer Bevölkerung zur Verkehrsmittelwahl (AGUS 2019) ist das am häufigsten genutzte Verkehrsmittel der Mülheimer Bevölkerung der PKW mit 52%/ 9% (Fahrer/ Beifahrer), der Radverkehrsanteil liegt bei 4 % und 16% aller Wege werden ausschließlich zu Fuß zurückgelegt. Etwa 19% aller Wege werden mit öffentlichen Verkehrsmitteln zurückgelegt. Seit der vorausgegangenen Befragung im Jahr 2012 gibt so gut wie keine Veränderungen im Modal Split.

2.5 Klimaschutzaktivitäten und Zielsetzungen

Die Bundesregierung verabschiedete im November 2016 den Klimaschutzplan 2050, in dem die nationalen Ziele aus den Verpflichtungen des Pariser Klimaschutzabkommens für Deutschland konkretisiert und umgesetzt werden. Das Pariser Klimaschutzabkommen verpflichtet alle Unterzeichnerstaaten, einen nationalen Klimaschutzbeitrag zu erbringen, um die Erderwärmung auf möglichst unter 1,5 Grad zu beschränken. Dabei sollen die Treibhausgasemissionen in Deutschland bis zum Jahr 2030 mindestens um 55 Prozent gegenüber 1990 gesenkt werden. Nachdem die EU ihr Ziel kürzlich mit 60% festgelegt hat, ist davon auszugehen, dass der Klimaschutzplan in seiner Fortschreibung diesbezüglich angepasst wird. Bis zum Jahr 2050 soll Deutschland klimaneutral werden. Hierzu hat die Bundesregierung das Bundes-

Die Ziele des Klima-Bündnis

- CO₂-Emissionen alle fünf Jahre um zehn Prozent vermindern - gleichbedeutend mit der Halbierung der Emissionen pro Einwohner bis 2030 (Basisjahr 1990)
- Emissionen auf 2,5 Tonnen CO2-Äquivalente pro Einwohner und Jahr senken - durch Energieeinsparungen, Energieeffizienz und den Einsatz erneuerbarer Energien
- gemeinsam mit indigenen Völkern Klimagerechtigkeit anstreben durch Unterstützung von Klimaschutzmaßnahmen, Bewusstseinsbildung und Verzicht auf Tropenholz aus Raubbau

Klimaschutz-Einführungsgesetz (KSGEG) vom 17.12.2019 beschlossen. Dessen Zweck nach §1 ist es, "...zum Schutz vor den Auswirkungen des weltweiten Klimawandels die Erfüllung der nationalen Klimaschutzziele sowie die Einhaltung der europäischen Zielvorgaben zu gewährleisten….. "

Während die Verhandlung und Festlegung von Klimaschutzzielen auf internationaler, europäischer und nationaler Ebene erfolgt, sind bei der Umsetzung der Ziele auf lokaler Ebene die Kommunen in besonderem Maße gefordert. Ein großer Teil der Emissionen aus Wohnen, Gewerbe, Industrie und Verkehr werden auf dieser Ebene erzeugt. Die Kommune hat vielfältige Funktionen und Handlungsmöglichkeiten, um den Klimaschutz vor Ort voranzubringen. Sie ist Eigentümerin, öffentliche Auftraggeberin, Trägerin der Planung und kann auch Vorbild sein. Kommunen gestalten vor Ort die lokale Energie und Verkehrspolitik, die Flächennutzung, die technische Infrastruktur sowie Versorgung und Abwasser-/Abfallentsorgung. Darüber hinaus unterstützen sie die Bevölkerung, die lokale Wirtschaft und andere Akteure bei eigenen Klimaschutzanstrengungen.

Mülheimer Stadtentwicklungsperspektiven steristika: Energlebedarf bezogen auf Nutzfläche unter Durchschnitt, kaum Freifläche, egend Mehrfamilienhäuser davon sehr viele große, sehr hohe Verdichtung; höchste Migranten- und ALG II-Anteile Maßnahmenintensität: Kurzfristig beginnende Umstrukturierung mit Entwickl ven für neue Bebauungsstrukturen sowie Entwicklung und Qualifizierung von Freiraum Sanierungsquartier Charakteristika: Viele Mehrfamilienhäuser, auch große, Einfamilienhäuser, vorwiegend ver-dichtete Siedlungen der 1950er , 1960er bis 1970er Jahre; überdurchschnittlicher Migran-ten- und ALG II-Anteil Maßnahmerintenstät: Langfristig beginnende Umstrukturierung mit Entwicklungsperspekti-ven für neue Bebauungsstrukturen, Qualifizierung von Freiraum Zukunftsquartier Charakteristika: Hochverdichtete Innenstadt und Hauptverkehrsachsen mit Gewerbe, sehr wenig Einfamilienhäuser, sehr viel Altbau; überdurchschnittliche Migranten- und ALG II-Anteile mit hoher Fluktuation nintensität: Anpassung der Bebauung und Qualifizierung für ein zukünftig realistisches Nutzungsmaß Charakteristika: Ausgeglichene Bebauungs- und Freiflächenstruktur; durchschnittliche Sozi alstruktur; viele Senioren, stabile Siedlungen der 1950er , 1960er bis 1970er Jahre Maßnahmenintensität: Kurzfristige Sicherung und Förderung einer bestandsorientierten energetischen Sanierung; Erhaltung und Qualifizierung für ein zukünftig realistisches Nutzungsmaß Charakteristika: Aufgelockerte Stadtrand, geringste Verdichtung, höchster Energiebedarf bezogen auf Nutzfläche, viele Einfamilienhäuser; höchster Seniorenanteil, überdurchschnitt-liche Sozialstruktur Maßnahmerintenstät: Langfristige Sicherung und Förderung einer bestandorientierten energetischen Sanierung; Erhaltung und Qualifizierung der vorhandenen Bebauungsstruktur Stabilisierungsquartier teristika: Stabile Altbausiedlungen mit vielen Einfamilienhäusern und kleinen Mehrfamilienhäusern: Unterchiedliche Sozi alstruktu Maßnahmenintensität: Erhaltung und energetische Qualifizierung der vorhandenen Beb Charakteristika: Saarner Kuppe und Wohnpark Witthausbusch, geringster Energiebedarf be-

Die Klimaschutzziele der Stadt wurden bereits 1993 mit dem Beitritt zum Klimabündnis auf

Abbildung 1 Mülheimer Stadtentwicklungsperspektiven

Basis einer freiwilligen Verpflichtung festgelegt. Seither wurden mehrere Klimaschutzkonzepte erstellt, als integrierte Konzepte (2001, 2010), Handlungsansätze und Leitgedanken zu "Klimaschutz und Klimaanpassung 2011" und solche mit unterschiedlichen Schwerpunkten wie das "Klimaschutzteilkonzept Kommunale Liegenschaften 2013", in dem Energiekennwerte und Maßnahmen für 100 städtische Gebäude detailliert ermittelt worden sind.

zogen auf Nutzfläche, geringster Migranten- und ALG II-Anteile

Datenbasis: Energienutzungsplan2012, Bevölkerungsdaten 31.12.2013 Clusteranalyse Stadt Mülheim an der Ruhr, des Referates V.1 Des Weiteren entstanden in diesem Zeitraum der "Energetische Stadtentwicklungsplan 2015" sowie die "Integrierten Quartierskonzepte - Heißen" 2015, - Dümpten 2018 und - Innenstadt 2018"…). Einen umfangreichen öffentlichen Dialog führte die Stadtverwaltung zudem im Jahr 2019 als Beteiligungsprozess "Dialog Klimaschutz und Energiewende Mülheim an der Ruhr".

Die Konzepte wurden vom Rat der Stadt zur Kenntnis genommen und nur in Einzelfällen beschlossen. Konkrete Maßnahmen zur Umsetzung des Energetischen Stadtentwicklungsplanes sowie deren Finanzierung sind Gegenstand des Beschlusses V17/0407-01-Beantragung von Fördermitteln für Klimaschutzmanager zur Umsetzung des Energetischen Stadtentwicklungsplanes. Wesentliche Inhalte des Energetischen Stadtentwicklungsplanes sind die Energie- und Treibhausgasbilanzierung für das Bilanzjahr 2012 und ein Energieplan, der die Energieinfrastruktur, ein Gebäudekataster sowie eine Wärmedichtekarte enthält. Die baulichen Strukturen und Kennwerte wurden in Bezug gesetzt zu städtebaulichen Strukturen sowie sozio-demographischen Daten. Hieraus leitet sich der Energetische Stadtentwicklungsplan mit seinen quartiersangepassten Zielen und Handlungsoptionen (Abb.1) ab.

Der Rat der Stadt Mülheim an der Ruhr hat mit dem Beschluss zum Energetischen Stadtentwicklungsplan den Prozess der Energetischen Stadtsanierung eingeleitet.

Klimaschutzziele bis 2030, die auf Grundlage des Zielszenarios zum Endenergieeinsatz und der darauf basierenden Hochrechnung der Treibhausgas-Emissionen entwickelt worden sind wurden damit ebenfalls beschlossen.

Ein Maßnahmenbaustein betrifft Quartiere, die ein besonders hohes Modernisierungspotenzial aufweisen, dort werden integrierte Quartierskonzepte erstellt und der darauf aufbauende Prozess der Energetischen Quartierserneuerung soll dann durch ein Sanierungsmanagement unterstützt werden.

Dieses soll - interessieren - aktivie-

Einzelziele Energetischer Stadtentwicklungsplan Mülheim an der Ruhr 2015-2030

- Reduzierung der Treibhausgasemissionen um 50% bis 2030 und um 82,5 % bis 2050 gegenüber 2016
- Erreichung einer Sanierungsrate von > = 2
- Senkung des Netzwärmebedarfs um 25 % von 2012 bis 2030
- Ausbau der Windenergie auf 20 GWh
- Ausbau der Photovoltaikanlagen auf 20 GWh
- Ausbau der Solarthermie auf 2,9 GWh
- Ausbau Zusatzenergieversorgung durch Solarthermie und/ oder Holzheizungen
- Ausbau und Verdichtung der Nahwärme
- Wärmeversorgung mittels Wärmepumpen

ren- und den Bürgerinnen und Bürgern im Quartier - dort wo gewünscht- hilfreich bei Umsetzung von Maßnahmen zur Seite stehen. Aktuell gibt es in den Quartieren Heißen und Dümpten ein Sanierungsmanagement.

Mit Hilfe der festgelegten Ziele lassen sich die Klimaschutzaktivitäten fokussiert voranbringen. Sie dienen als Orientierung, Motivation und Verpflichtung gleichermaßen und zielen auf

eine nachhaltige Gestaltung der Klimaschutzarbeit ab. Zur Zielerreichung bedarf es der politischen Legitimation und Unterstützung der entsprechenden kommunalen Entscheidungsorgane

3. Anlass und Ziel der Fortschreibung der Treibhausgasbilanz

Der vorliegende Bericht hat zum Ziel, die für das Referenzjahr 2018 erstellte Treibhausgasbilanz aller relevanten Sektoren in Mülheim an der Ruhr aufzubereiten, eine regelmäßige Fortschreibung dieser Situationsanalyse zu ermöglichen und basierend auf den nationalen und kommunalen Klimaschutzzielen Handlungsfelder abzuleiten. Diese können als Diskussionsgrundlage für die weitere politische Entscheidungsfindung im Hinblick auf eigene kommunale Klimaschutzaktivitäten dienen.

Im Zusammenhang mit dem Integrierten Klimaschutzkonzept (2010) hatte die Stadt Mülheim an der Ruhr für das Jahr 1990 eine Startbilanz erstellt und diese dann regelmäßig fortgeführt. Mit dem Energetischen Stadtentwicklungsplan im Jahr 2015 wurde die Bilanzierung für das Jahr 2012 veröffentlicht und die, bis dahin erreichten Ziele dokumentiert und bewertet.

Bis zum Jahr 2012 wurde zur Erstellung der Energie- und Treibhausgasbilanzen das bis dahin weitverbreitete Tool EcoRegion verwendet. Mit dem Bilanzjahr 2015 hat die Stadt einen Systemwechsel in der Bilanzierung zum neu entwickelten Tool des Klima-Bündnis, dem Klimaplaner vollzogen. Zwischenzeitlich wurde der Klimaschutz-Planer als Standard in zahlreichen Kommunen in Deutschland eingeführt. Es besteht nach dem, der Bilanzierung zu Grunde liegenden Standard erstmalig die Möglichkeit kommunale Vergleiche zu führen.

Aufgrund der bestehenden Beschlusslage wird die Energie- und Treibhausgasbilanz seit 2011 regelmäßig fortgeschrieben. Hierüber wird im Fachausschuss für Umwelt- und Energie berichtet. Für den Zeitraum 1990 -2018 hat die Stadt eine lückenlose Zeitreihe der Energie und Treibhausgasbilanzierung.

Der Rat der Stadt Mülheim an der Ruhr hat am 25.6.2020 auf der Grundlage eines interfraktionellen Antrages (A 20/0433-01) die Klimanotlage/Climate Emergency für die Stadt festgestellt, wonach die bisherigen staatlichen und kommunalen Aktivitäten nicht ausreichen, um das im Pariser Klimaabkommen festgelegte Ziel der Begrenzung der globalen Erderwärmung auf 1,5 Grad Celsius bezogen auf das vorindustrielle Niveau zu erreichen.

Bei Entscheidungen des Rates der Stadt werden ab sofort Lösungen bevorzugt, die die Konzent-

Neues Ziel bis 2035 - Klimaneutralität

ration der Treibhausgase verringern und sich positiv auf das Klima auswirken.

Es ist ein aktualisiertes ambitioniertes und soziales integriertes Klimaschutzkonzept zu erarbeiten, an dem die Fachöffentlichkeit und wesentliche Akteure der Stadtgesellschaft, sowie Vereine, Verbände und Politik beteiligt sein werden.

Das Konzept soll Maßnahmen beinhalten, die eine Realisierung der Klimaneutralität der Stadt Mülheim an der Ruhr bis zum Jahr 2035 ermöglichen. Die Bereiche Energie, Industrie, Bauwirtschaft, Wohnen, Individualverkehr, ÖPNV, Landwirtschaft, Grünflächen und auch Wald sollen einbezogen werden.

"Klimaneutralität² bedeutet, ein Gleichgewicht zwischen Kohlenstoffemissionen und der Aufnahme von Kohlenstoff aus der Atmosphäre in Kohlenstoffsenken herzustellen. Um Netto-Null-Emissionen zu erreichen, müssen alle Treibhausgasemissionen weltweit durch Kohlenstoffbindung ausgeglichen werden."

Zur Erstellung eines aktualisierten Klimaschutzkonzeptes das auch Maßnahmen beinhaltet, die eine Realisierung der Klimaneutralität der Stadt Mülheim an der Ruhr bis zum Jahr 2035 aufzeigt, ist zu zunächst ein Basisjahr festzulegen. Aus diesem Grunde wird die Bilanz für 2018 erstellt und hiervon ausgehend sollen Szenarien zur Erreichung der Klimaneutralität entwickelt werden.

4. Methodische Grundlagen der Bilanzierung

Die Bilanzierung der Treibhausgasemissionen der Jahre 1990 - 2014 wurde mit dem Tool EcoRegion erstellt. Für die Jahre 2015-2018 wurde der Klimaschutz-Planer verwendet. Kommunale Energie- und Treibhausgasbilanzen sind ein Instrument für das Klimaschutz-Monitoring. Über eine längere Zeitreihe hinweg werden der Energieverbrauch und die damit verbundenen Treibhausgas-Emissionen nach einer einheitlichen und konsistenten Methodik ermittelt und dabei möglichst viele lokale Aspekte berücksichtigt. Durch sektorale Betrachtung können lokale Energie- und Treibhausgaseinsparungen und Energieeffizienzaspekte abgebildet werden. Die Treibhausgase werden in CO₂-Äquivalente umgerechnet³.

Der durch den Menschen seit Beginn der Industrialisierung verursachte Anstieg des Gehalts an Kohlendioxid (CO₂) in der Erdatmosphäre gilt als Hauptverursacher für den Treibhauseffekt. Aber auch andere Gase, wie z. B. Methan (CH₄), tragen zum Treibhauseffekt bei. Um die unterschiedlichen Wirkungen dieser Gase in einer Maßzahl, der CO₂-Äquivalentmenge, ausdrücken zu können, wird ihre jeweilige Klimawirksamkeit mit der von Kohlendioxid verglichen und auf diese umgerechnet.

² vgl. https://www.europarl.europa.eu/news/de/headlines/society/20190926STO62270/was-versteht-man-unter- klimaneutrali-

tat#:~:text=Klimaneutralit%C3%A4t%20bedeutet%2C%20ein%20Gleichgewicht%20zwischen,weltweit%20durch %20Kohlenstoffbindung%20ausgeglichen%20werden.

³ CO₂-Äquivalentmengen

Eine Treibhausgasbilanz ist somit ein Instrument, um Anstrengungen im Klimaschutz auf Bundesebene sowie lokaler Ebene zu überprüfen. Durch die Erstellung der Bilanz wird selbst keine Tonne CO_2 reduziert – sie ist ein Mittel zum Zweck. Mit Hilfe einer Treibhausgasbilanz können Fehlentwicklungen erkannt und diesen entgegengewirkt werden.

In der vorliegenden Bilanz werden nichtenergetische Emissionen, wie z. B. aus Landwirtschaft oder Industrieprozessen sowie graue Energie, die beispielsweise in Konsumprodukten steckt, nicht berücksichtigt.

4.1 Das Bilanzierungstool

Zur Bilanzierung der Energieströme und Treibhausgas-Emissionen auf kommunaler Ebene können verschiedene Werkzeuge zum Einsatz kommen. Zwei der derzeit am Markt gängigsten Softwarelösungen sind die webbasierten Tools EcoRegion ⁴ und der Klimaschutz-Planer ⁵ des Klima-Bündnis. Die Stadt Mülheim an der Ruhr hat bis zum Jahr 2012 ihre Bilanzen mit dem Bilanzierungstool EcoRegion erstellt. Mit der Bilanz 2015 erfolgte ein Wechsel zum Klimaschutz-Planer. Die Bilanzen der Jahre 1990-2014 wurden in das neue Tool importiert. Die Bilanzen 2012-2014 sind in diesem Zusammenhang überarbeitet worden.

Energie- und Treibhausgasbilanzen unterscheiden sich hinsichtlich des zu Grunde gelegten Bilanzierungsprinzips häufig deutlich voneinander. EcoRegion arbeitet nach dem methodischen Ansatz einer Mischform aus Territorialbilanz und Verursacherbilanz und verwendet hierzu statistische Daten und nationale Kennwerte wie z.B. Bevölkerungsdaten und Beschäftige nach Wirtschaftszweigen.

Der Klimaschutz-Planer folgt der Bilanzierungssystematik des Endenergiebasierten Territorialansatzes (BISKO)⁶. Dabei werden alle im betrachteten Territorium anfallenden Verbräuche auf Ebene der Endenergie wie z.B. am Hauszähler gemessen berücksichtigt und den verschiedenen Verbrauchssektoren zugeordnet. Über spezifische Emissionsfaktoren werden dann die Treibhausgas-Emissionen berechnet. Hierbei werden die Vorketten der Energiebereitstellung berücksichtigt. Graue Energie wird nicht bilanziert.

Die vorliegende Bilanz 2018 umfasst den Endenergieverbrauch und die $CO_{2\ddot{a}q}$ -Emissionen auf dem Gebiet der Stadt Mülheim an der Ruhr, unterteilt nach Sektoren sowie nach den

⁵ Val. https://www.klimaschutz-planer.de/

⁴ vgl. <u>https://www.ecospeed.ch/region/de/</u>

⁶ BISKO (Bilanzierungs-Systematik-Kommunal): Entwickelt 2014 durch das Institut für Energie- und Umweltforschung(ifeu gGmbH) und dem Klima-Bündnis zur bundesweiten Vereinheitlichung von Bilanzen

eingesetzten Energieträgern. Bei den Sektoren erfolgt eine Unterscheidung nach Kommunale Verwaltung, Private Haushalte, Industrie, Gewerbe, Handel, Dienstleistungen, Verkehr. In Tabelle 1 sind Sektoren näher erläutert.

Sektor	Erläuterung			
Kommunale Verwaltung (KE)	Öffentliche Einrichtungen wie Rathaus, Verwaltungsgebäude, Schulen, Kitas, sonstigen kommunalen Gebäude und Infrastruktur. Einbezogen werden alle Verwaltungsgebäude, die die Kommune nutzt. Dabei ist es unerheblich ob sich diese Gebäude in kommunalem Besitz befinden oder ob sie gemietet sind.			
Private Haushalte (HH)	Gesamtverbrauch der privaten Haushalte für die Bereiche Wärmebereitstellung und Strom			
Industrie (IND)	Verarbeitende Industrie/Verarbeitendes Gewerbe, Energieverbrauch des Verarbeitenden Gewerbes, Bergbau und Gewinnung von Steinen und Erden			
Gewerbe, Handel, Dienstleistungen (GHD)	Energieverbrauch aller bisher nicht erfassten wirtschaftlichen Betrieb sowie Verarbeitenden Gewerbes mit weniger als 20 Mitarbeitern un landwirtschaftliche Betriebe			
Verkehr	Motorisierter Individualverkehr (PKW, Motorrad), Öffentlicher Personenverkehr (Bus, Bahn, Straßenbahn), Flugverkehr			

Tabelle 1 Erläuterung Sektoren

In der nachfolgenden Tabelle 2 sind die relevanten Energieträger aller Sektoren aufgelistet.

Übersicht der relevanten Energieträger				
Energieträger (Stationär)	Energieträger (Verkehr)			
Strom	Erdgas			
Heizstrom	Diesel			
Erdgas	Benzin			
Fernwärme	Flüssiggas (LPG)			
Nahwärme	Strom			

Heizöl	
Energieträger (Stationär)	Energieträger (Verkehr)
Flüssiggas	
Steinkohle	
Braunkohle	
Solarthermie	
Biomasse	
Umweltwärme	
Sonstige Erneuerbare	
Sonstige Konventionelle	
Biogas	

Tabelle 2 Übersicht der relevanten Energieträger

4.2 Datenquellen

Die Datenerhebung für die Bilanzerstellung erfolgte für den Bilanzierungszeitraum 2012-2018. Für das Gebiet der Stadt Mülheim an der Ruhr sind in der Bilanz differenziert nach Energieträgern Daten erhoben worden. Die leitungsgebundenen Energieträger Strom, Erdgas, Nah-/ Fernwärme sind bei den Netzbetreibern bzw. durch Abfrage der Industrieunternehmen im Stadtgebiet auf der Basis von direkt gemessenen Endenergieverbräuchen (Primärdaten) erhoben worden.

Die nicht-leitungsgebundenen Energieträger werden in der Regel zur Erzeugung von Wärmeenergie genutzt. Zu den nicht-leitungsgebundenen Energieträgern im Sinne dieser Betrachtung zählen Heizöl, Flüssiggas, Braun- und Steinkohle, Holz. Diese wurden bei der Schornsteinfegerinnung in Düsseldorf abgefragt, die Anzahl- und Leistungsdaten von Verbrennungsanlagen übermittelt. Hieraus wurde ein Endenergieverbrauch berechnet. Angaben zur regenerativ erzeugten Wärme aus Solarthermie wurde aus den Angaben der geförderten Anlagen berechnet. Die Leistung der Wärmepumpen konnte aus dem Endenergiebedarf Wärmestrom errechnet werden. Die Angaben über die regenerative Stromproduktion im Stadtgebiet basieren auf den Daten des Netzbetreibers und einzelnen Erzeugern, die ihren

Strom nicht nach EEG einspeisen. Für den Verkehr wurden Daten des ifeu gGmbH unter Berücksichtigung des "Transport Emission Model" TREMOD⁷ verwendet.

Die Emissionsfaktoren entstammen diverser Datenbanken wie z. B. dem Umweltbundesamt oder Gemis 4.94. In der nachfolgenden Tabelle sind die für die Energie- und Treibhausgas - Bilanzierung spezifischen Daten und deren Quellen aufgelistet.

Daten	Datenquelle		
Stromverbrauch nach Verbrauchssektoren	Netzbetreiber (Westenergie AG)		
Erdgas nach Verbrauchssektoren	Netzbetreiber (medl GmbH) und Abfragen der Industriebetrieben		
Nah-/Fernwärme nach Verbrauchssektoren	Nahwärmenetzbetreiber (medl GmbH)		
Anzahl Feuerungsanlagen nach Leistungsklassen	Schornsteinfegerinnung Düsseldorf		
Erneuerbare Energien Strom	Netzbetreiber (Westenergie AG) und Erzeuger		
Erneuerbare Energie Wärme (Solarthermie, Umweltwärme, Biomasse)	Energieagentur.NRW, BAFA, medl GmbH, progres.nrw, Netzbetreiber (Westenergie AG)		
Energieverbrauch Kommunale Gebäude	Amt 26-Immobilienservice, städtische Betriebe und Gesellschaften		
Straßenbeleuchtung	Amt 66 - für Tiefbau und Verkehrswesen		
Verkehr allgemein inkl. Schifffahrt und Flugverkehr*	"Transport Emission Model" TREMOD , ifeu gGmbH		
Verkehr Linienbus/	Ruhrbahn GmbH		
Verkehr S + U Bahn	Ruhrbahn		

Tabelle 3 Bilanzierungsdaten und Quellen

Der Endenergieverbrauch der Kommunalen Gebäude berücksichtigt bislang ausschließlich die von der Stadt-Amt 26 bewirtschafteten Gebäude. Für den weiteren Gebäudebestand z.B. der MST GmbH und weiterer städtischer Gesellschaften liegen aktuell keine vollständigen Daten vor.

In der Bilanz der Stadt werden bislang keine Emissionsdaten aus dem Flug- und Schiffsverkehr berücksichtigt. Der Flugverkehr wird nur für Start- und Landephase (Landing and

-

⁷ vgl. https://www.ifeu.de/methoden/modelle/tremod/

Take-off Cycle) d.h. maximal bis 3000 ft. (900m) in Kommunen bilanziert, auf deren Territorium sich anteilig ein Flughafengelände befindet. Für den Mülheim-Essener Flughafen liegen aktuell keine Zahlen vor.

Anhand des ermittelten Energiebedarfs in den verschiedenen Anwendungsbereichen und Verwendung von Kennwerten zur Hochrechnung von emissionsrelevanten Anwendungen wurde eine Endenergiebilanz ermittelt, welche ohne Witterungsbereinigung die Grundlage der Treibhausgasbilanzierung darstellt. Über die spezifischen Emissionsfaktoren (Abb. 2) wurden die Treibhausgasemissionen berechnet. Neben den reinen CO_2 -Emissionen werden weitere Treibhausgase (N_2O und CH_4) in die Betrachtung einbezogen und in Summe als CO_2 -Äquivalente ($CO_{2\bar{a}0}$) ausgewiesen.

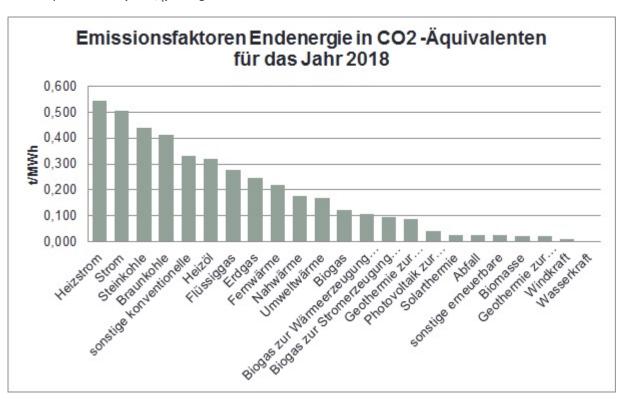


Abbildung 2 Emissionsfaktoren Klimaschutz-Planer 2018

Die energiebezogenen Vorketten (u.a. Infrastruktur, Abbau und Transport von Energieträgern) sind bei den Emissionsfaktoren mit berücksichtigt. Beim Strom wird mittels eines bundesweit gültigen Emissionsfaktors bilanziert. Dies soll eine bessere Vergleichbarkeit ermöglichen. Der lokale Emissionsfaktor für Strom in CO_2 -Äquivalenten für das Jahr 2018 beträgt 0,504 t/MWh, im Vergleich der im Klimaschutz-Planer angegebene BRD Mix 0,544 t/MWh. Der Strommix wird zunehmend durch den steigenden Anteil erneuerbarer Energien beeinflusst.

Verkehrsbilanzierung

Die Emissionen im Verkehrsbereich setzen sich aus dem innerstädtischen Verkehr (Kfz, ÖPNV), dem Pendlerverkehr (PKW, Bahn), Fernverkehr (Kfz, Eisenbahn, Flugverkehr) und

Güterverkehr zusammen. Der Klimaschutz-Planer nutzt als homogenes Bilanzierungsprinzip über alle kommunalen Verbrauchssektoren die Territorialbilanz. Im Verkehr bedeutet das, dass die Quell-, Ziel- und Durchgangsverkehre inklusive der Bundesstraßen und Bundesautobahnen in die Energieverbräuche mit einbezogen werden. Im Verkehrsbereich werden alle Fahrten innerhalb des Territoriums der Kommune betrachtet. Dazu gehören sowohl der Binnenverkehr, der Quell-/Zielverkehr als auch der Transitverkehr (siehe Abb.3). In Deutschland werden mit dem Model TREMOD harmonisierte und regelmäßig aktualisierte Emissionsfaktoren für alle Verkehrsmittel bereitgestellt. Die Werte sind analog zu den stationären Sektoren in CO₂-Äquivalenten (CO₂, CH₄, N₂O) inkl. der Vorketten der Energieträgerbereitstellung angegeben. Die Bilanzierung im Verkehr basiert zu großen Teilen auf bundesweiten und regionalen Kennwerten. Für den Bereich des regionalen ÖPNV sowie der kommunalen Flotte wurden zusätzliche Daten erhoben.

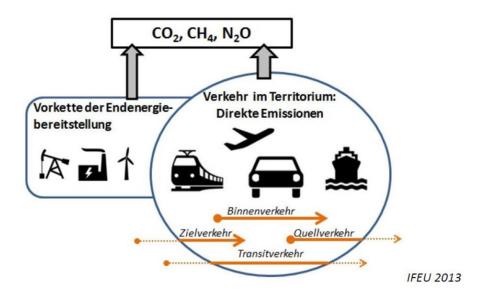


Abbildung 3 Bilanzierungssystematik Verkehr nach Ifeu 2013

Die nachfolgende Tabelle 4 gibt einen Überblick über die – bei der Bilanzierung berücksichtigten – Verkehrsmittel und deren Datenherkunft.

Verkehrsmittel	Datenherkunft
Flugverkehr	fehlt
Binnenschifffahrt	Territorial automatisch hinterlegt (IFEU)
Straßenverkehr	Territorial automatisch hinterlegt (IFEU)
Schienenverkehr	Territorial automatisch hinterlegt (IFEU)
Linienbus	Ruhrbahn

Verkehrsmittel	Datenherkunft		
Stadt-Straßen-U-Bahnen	Ruhrbahn		
Kommunale Flotte	unvollständig, Stadtverwaltung und städtische Gesellschaften		

Tabelle 4 Verkehrsmittel mit verwendeter Datenherkunft

Verkehrsträger	räger Daten		Kommunenspezifikation	
	Fahrleistung	UBA, TREMOD	Kommunenspezifisch	
Straßenverkehr	Spezifischer Energiever- brauch und Emissionsfak- toren	TREMOD	Nationale Durchschnittswerte	
Schienenverkehr Endenergieverbrauch		Deutsche Bahn	Kommunenspezifisch	
Binnenschiffverkehr	Endenergieverbrauch	TREMOD	Kommunenspezifisch	
Flugverkehr Endenergieverbrauch		Flughafen Essen fehlt Mülheim GmbH		
alle Emissionsfaktoren		TREMOD	Nationale Durchschnittswerte	

Tabelle 5 Verkehrsträger- Daten und Quellen

Tabelle 5 gibt Auskunft über die Verkehrsträger, die Art der Daten sowie Datenquellen und die Kommunenspezifikation.

Die Datengüte

Die vorliegende Bilanz basiert auf Primärdaten (gezählt, gemessen), berechneten Daten als auch Daten aus der Bundes-, Landes- und kommunalen Statistiken. Grund hierfür ist, dass nicht für alle Bereiche ausreichend Primärdaten zur Verfügung stehen, oder aber diese nur mit erheblichem Aufwand zu beschaffen sind.

Datengüte	Datengüte Beschreibung			
А	1			
B Hochrechnung regionaler Primärdaten		0,5		
C Regionale Kennwerte und Statistiken		0,25		
D	D Bundeswei te Kennzahlen			

Tabelle 6 Einteilung der Datengüte

Zur besseren Unterscheidung der Datenqualität bzw. Datengüte wurde eine Skalierung von 0-1 eingeführt (Tab.6) wobei 1 für die bestmögliche Qualität der Daten steht.

Generell gilt: je höher die Datenqualität in allen Bereichen, desto qualitativer und aussagefähiger ist die Bilanzierung in Bezug auf die lokalen Gegebenheiten. Die Aussagegenauigkeit der Energie- und Treibhausgasbilanz hängt davon ab, in welchem Umfang spezifische Daten zur lokalen Energiesituation zur Verfügung stehen. Im Laufe der Jahre hat sich die Datengüte verbessert. Für eine Vereinheitlichung der Bilanzierungsmethoden entwickelte das ifeu 2014 im Auftrag des Bundesumweltministeriums zusammen mit dem Klima-Bündnis und dem Institut für dezentrale Energiesysteme eine neue Bilanzierungssystematik für Kommunen. Die wesentlichen Elemente dieses sogenannten BISKO-Standards sind seit 2015 veröffentlicht. Insgesamt hat sich die Datengüte mit der Einführung des Klimaschutzplaners und der damit einhergehenden BISKO Systematik deutlich verbessert. Bei der Herstellung von Bezügen zwischen den verschiedenen Bilanzierungsepochen ist immer die unterschiedliche Qualität der Datengüte und der Systemwechsel in der Bilanzierungsmethodik zu berücksichtigen. Diese Entwicklung wird in Abb.4 verdeutlicht.

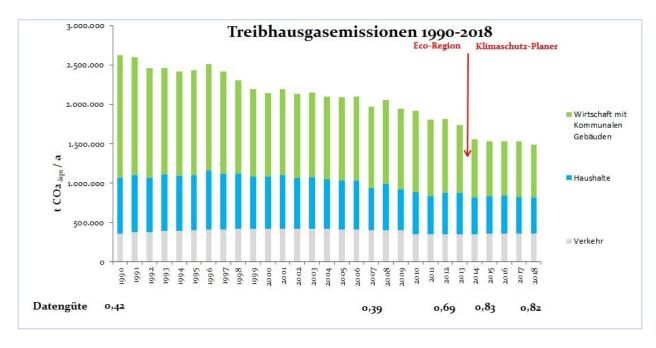


Abbildung 4 Treibhausgasemiassionen 1990-2018 mit Datengüte

5. Energiebilanz

Die Energiebilanz der Stadt Mülheim an der Ruhr für das Jahr 2018 wird nachfolgend erläutert.

A. Stationäre Bilanz

Die Energiebilanzen werden entsprechend der emissionsrelevanten Energieträger auf die Sektoren Haushalte, Industrie, Gewerbe/Handel/Dienstleistungen und Kommunale Verwaltung unterteilt. Der Verkehr wird unter Punkt B Verkehrsbilanz betrachtet.

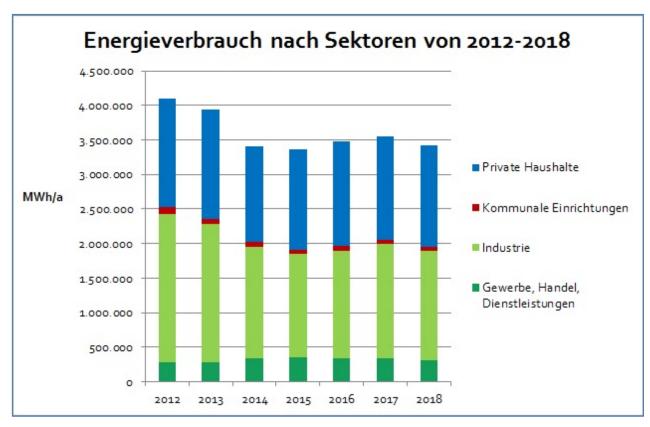
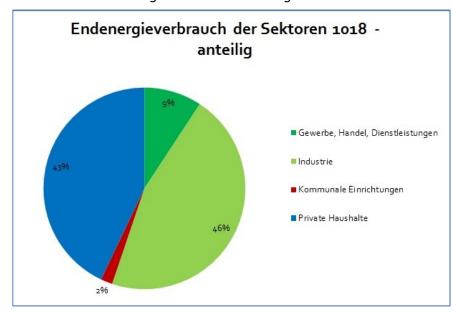



Abbildung 5 Energieverbrauch-sektoral 2012-2018

Für die Bilanzierung lagen Primärdaten für die Jahre 2012-2018 vor. Auf eine Rückschau von 1990-2012 (Eco-Region) wird verzichtet. In diesem Zusammenhang wird auf den Darstellungen zur Energie- und Treibhausgasbilanzierung im Energetischen Stadtentwicklungsplan 2015 verwiesen.

In Mülheim an der Ruhr wurden im Jahr 2018 für Strom und Wärme 3.423.529 MWh an Energie aufgewendet. Im Vergleich zum Jahr 2012 ist dies eine Minderung um 16,5%. Hiervon entfallen allein 46% auf den Sektor der Industrie, die mit der Herstellung von z.B. Grobblech und Rohren einen sehr hohen Wärmebedarf hat. Daneben in vergleichbarer Größenordnung steht der Endenergiebedarf im Sektor der Privaten Haushalte mit einem Anteil von 43%, wovon etwa zwei Drittel für die Beheizung von Gebäuden Verwendung findet. Wie der Abb.6 zu entnehmen ist, sind die fossilen Energieträger wie Erdgas, Heizstrom und

Heizöl die Hauptenergieträger für die Beheizung von Gebäuden im Stadtgebiet. In der Produktion, insbesondere der Stahlindustrie und dem Maschinenbau findet neben Gas in erheblichem Umfang Strom Verwendung.

Insofern sind die Daten differenzierter zu betrachten.

Der Anteil an Erdgas hat sich hiernach um 15,8%, der an Strom um 8,8%, Heizstrom 32.5% und Heizöl um 4,7% im Betrachtungszeitraum vermindert. Die Daten sind nicht klimabereinigt.

Abbildung 6 Endenergieverbrauch 2018 -sektoral

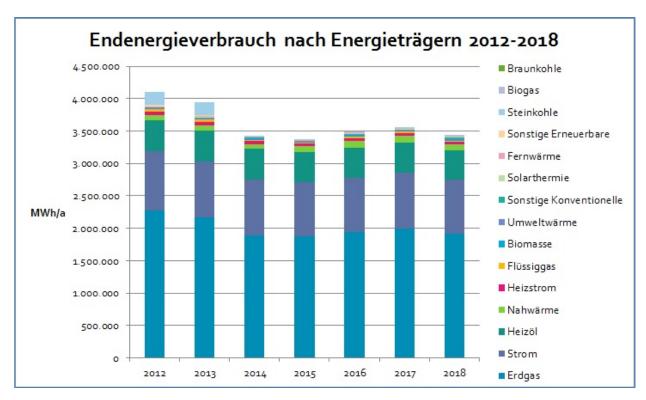


Abbildung 7 Endenergieverbrauch nach Energieträgern 2012-2018

Der Anteil der Erneuerbaren Energien, die im Stadtgebiet erzeugt oder in BHKW-Anlagen bilanziell angerechnet werden hat sich im Bereich Wärme von 2,5 % auf 3,4% gesteigert und bei Strom von 5,6% auf 9,4% in Bezug zum jährlichen Bedarf. Bei den Privaten Haushalten hat der Energiebedarf insgesamt zugenommen.

Dies ist jedoch die Folge einer gestiegenen Einwohnerzahl. Bei der Betrachtung, der in diesem Falle witterungsbereinigten Daten führt dies die einer Zunahme von 21.243 MWh Endenergie in der Zeitspanne 2012-2018. Bezogen auf den Bedarf /Person ergeben sich eine Minderung von 9,47MWh/Person*a auf 9,34 MWh/Person*a.

Energieträger	2012	2013	2014	2015	2016	2017	2018
Erdgas	2.273.738	2.163.669	1.893.048	1.871.532	1.941.154	1.997.240	1.914.865
Strom	911.411	864.102	861.947	837.868	841.323	863.513	831.353
Heizöl	480.487	476.048	474.543	470.953	466.293	462.685	457.864
Nahwärme	81.187	85.074	70.700	84.156	98.408	101.266	88.480
Heizstrom	57.880	54.500	41.718	45.694	45.417	42.637	39.093
Flüssiggas	30.175	29.964	25.946	5.252	23.465	22.212	21.403
Biomasse	16.547	18.527	15.743	18.231	22.512	22.740	21.216
Umweltwärme	9.023	10.453	9.100	10.900	11.936	12.711	13.815
Sonstige Konventionelle	0	0	1.952	1.178	2.239	1.796	12.657
Solarthermie	10.814	10.831	3.529	3.688	9.819	9.857	11.170
Fernwärme	12.273	13.726	9.887	11.397	12.293	12.096	10.666
Sonstige Erneuerbare	25.578	25.366	68	42	132	84	793
Steinkohle	191.368	186.701	3.032	2.945	2.951	3.053	153
Biogas	0	0	0	0	0	0	0

Tabelle 7 Endenergieverbrauch nach Energieträgern 2012-2018

B. Energiebilanz des Verkehrs

Im Folgenden wird die Bilanz des Verkehrs betrachtet und nach Verkehrsmittel und Energieträger dargestellt. Die Bilanzierung erfolgt auf Basis des Territorialprinzips (siehe Methoden)



Abbildung 8 Bilanzen Verkehr nach Verkehrsmitteln 2012-2018

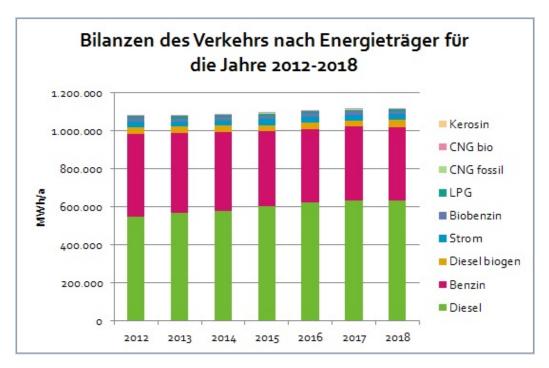


Abbildung 9 Bilanzen Verkehr nach Energieträger 2012-2018

Im Jahr 2018 verantwortete der Verkehrssektor in Mülheim an der Ruhr etwa 25 Prozent des Gesamtenergieverbrauchs, nämlich rund 1.115.639 MWh/a.

Energieträger	2012	2013	2014	2015	2016	2017	2018
Diesel	178.978	184.883	188.868	196.662	202.735	206.451	206.585
Benzin	135.730	132.005	129.885	127.083	125.619	125.475	124.727
Diesel biogen	5.427	4.490	4.838	4.675	3.972	3.920	4.096
Biobenzin	3.534	3.319	3.349	3.405	3.312	3.518	3.149
LPG	3.106	3.205	3.191	3.111	2.939	2.743	2.540
CNG fossil	583	554	519	457	414	375	401
CNG bio	11	15	18	10	13	16	119
Kerosin	0	0	0	0	0	0	0

Tabelle 8 Gesamtenergieverbrauch- Verkehr 2012-2018

Im Vergleich zum Bilanzjahr 2012 sind die Endenergieverbräuche weiter, um 3,2 Prozent angestiegen. Der motorisierte Individualverkehr macht weiterhin den größten Anteil an den Verbräuchen aus, gefolgt von leichten Nutzfahrzeugen. Diesel und Benzin sind die Hauptenergieträger. Die größten Verbrauchzuwächse finden bei den leichten Nutzfahrzeu-

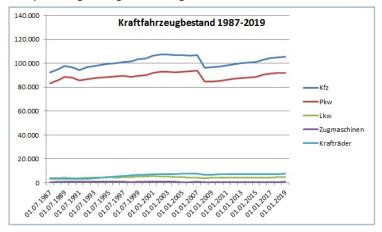


Abbildung 10 Kraftfahrzeugbestand in Mülheim an der Ruhr 2012-2019

gen und LKW statt. Mülheim ist eine Stadt, in der Autofahrer und Autofahrerinnen erste Priorität haben. Dies spiegelt sich bei den Statistiken zum Kraftfahrzeugbestand, den Endenergieverbräuchen wie auch dem Straßennetz wieder. Das Straßennetz und die sehr guten Anbin-

dungen in alle Regionen bildet zusammen mit der überdurchschnittlichen Einkommenssituation sowie weiteren Aspekten in Mülheim an der Ruhr die Grundlage für den hohen Kfz-Bestand mit einem entsprechenden Anteil am Modal Split. In der Stadt waren zum 1.1.2020 107.936 Kraftfahrzeuge zugelassen, davon 94.467 PKW.

Den Radfahrern stehen rund 138 km echter Radwege zur Verfügung sowie ständig zunehmende Radfahrschutzstreifen an allen stark befahrenen Straßen. Mülheim an der Ruhr ist "fahrradfreundliche Stadt" und bemüht sich, trotz eingeschränkter finanzieller Mittel das Radfahrangebot ständig zu verbessern. Trotzdem besteht der Radverkehr im Wesentlichen aus Freizeitverkehr.

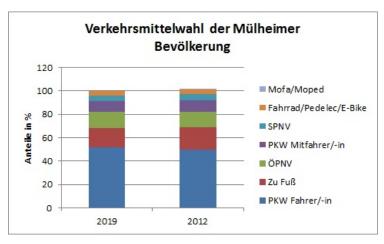


Abbildung 11 Verkehrsmittelwahl der Mülheimer Bevölkerung 2012/2019

Eine 2019 durchgeführte Haushaltsbefragung ergab, dass jeder Mülheimer durchschnittlich 3,0 Wege und Fahrten am Tag zurücklegt, am meisten die Altersgruppe zwischen 30 und 50 Jahren. Die Bevölkerung ab 75 Jahren legt die wenigsten Wege zurück. Das am häufigsten genutzte Verkehrsmittel der Mül-

heimer Bevölkerung ist der PKW mit 52 Prozent. Weitere 9 Prozent nut-

zen als Mitfahrer den PKW. Bedeutung hat auch der Fußgängerverkehr mit einem Anteil von 16 Prozent an allen Wegen. Knapp ein Fünftel aller Wege wird mit öffentlichen Verkehrsmitteln zurückgelegt. Hiervon entfallen rund 9 Prozent auf den Öffentlichen Personennahverkehr und 5 Prozent auf den Schienenpersonennahverkehr. Die Zahlen sind gegenüber dem Jahr 2012 fast unverändert.

Der Anteil der Elektrofahrzeuge steigt im Stadtgebiet auf sehr niedrigem Niveau an. In der hier vorgelegten Energie- und Treibhausgasbilanz haben die wenigen Fahrzeuge bislang keine Bedeutung. Es gibt aktuell rund 130 reine Batterie - elektrisch betriebenen Fahrzeuge. Der Anteil der Plug-In Hybride wächst seit 2019 von 0 auf >100.

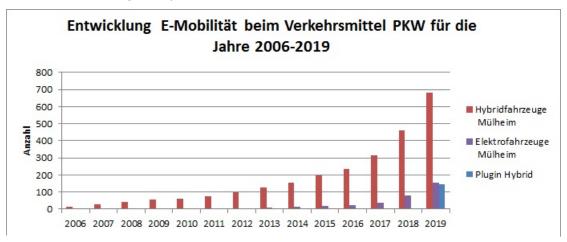


Abbildung 12 Elektromobilität Mülheim an der Ruhr 2006-2019

6. Treibhausgasbilanz

Die Treibhausgasbilanz wird im Folgenden entsprechend der emissionsrelevanten Energieträger und Sektoren Haushalte, Industrie, Gewerbe/Handel/Dienstleistungen und Kommunale Verwaltung und Verkehr dargestellt. Die Ergebnisse berücksichtigen die Treibhaus-

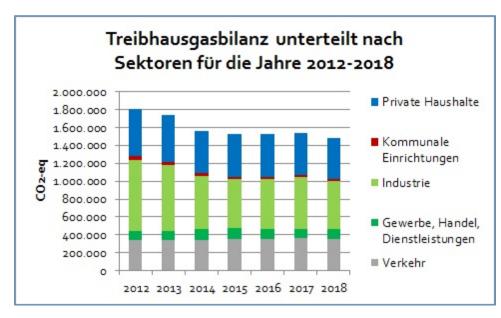


Abbildung 13 Treibhausgasemissionen Mülheim an der Ruhr 2012-2018

gasemissionen verschiedener klimarelevanter Gase und werden daher als CO_2 - Äquivalente ausgewiesen.

Den größten Anteil an den Treibhausgasemissionen haben Industrie und Gewerbe mit rund 45 Prozent der Treibhaus-

Emissionen, dicht gefolgt von den privaten Haushalte mit 31 Prozent und Verkehr mit 24 Prozent. Insgesamt haben sich die Emissionen um 327.315t $CO_{2\ddot{A}q}/a$ gegenüber dem Jahr 2012 vermindert. Wie der Entwicklung der Treibhausgas-Emissionen von Strom, der über das Netz bezogen zu erkennen ist, liegen hier die deutlichsten Reduktionen mit einem Anteil von rund 41,7 Prozent. Dies ist nicht nur in einem abnehmenden Strombezug in diesem Zeitraum begründet sondern auch in den zuwachsenden Anteil erneuerbarer Energien, der zu einem verbesserten Emissionsfaktor (BRD-Mix) führt.

Abbildung 14 Treibhausgasemissionen aus Strom in Mülheim an der Ruhr 2012-2018

Gesamt [t CO2 -Äquivalente]		1.809.017	1.737.925	1.557.803	1.524.845	1.531.226	1.533.080	1.481.702
Sonstige Konver	ntionelle	0	0	644	389	739	593	4.177
CNG bio		11	15	18	10	13	16	119
Solarthermie		269	269	88	92	245	246	279
Biomasse		442	494	420	487	495	500	467
CNG fossil		583	554	519	457	414	375	401
Sonstige Erneue	erbare	639	634	2	1	3	2	20
Umweltwärme		1.819	2.068	1.763	2.044	2.167	2.201	2.349
Fernwärme		2.693	3.013	2.161	2.485	2.720	2.642	2.342
LPG		3.106	3.205	3.191	3.111	2.939	2.743	2.540
Biobenzin		3.534	3.319	3.349	3.405	3.312	3.518	3.149
Diesel biogen		5.427	4.490	4.838	4.675	3.972	3.920	4.096
Flüssiggas		8.046	7.990	6.919	1.400	6.476	6.130	5.907
Nahwärme		18.003	20.727	12.666	13.322	16.681	17.725	15.896
Heizstrom		37.333	34.499	25.865	27.416	26.387	23.621	21.267
Steinkohle		84.967	82.895	1.346	1.307	1.293	1.337	67
Benzin		135.730	132.005	129.885	127.083	125.619	125.475	124.727
Heizöl		153.756	152.335	151.854	150.705	148.281	147.134	145.601
Diesel		178.978	184.883	188.868	196.662	202.735	206.451	206.585
Erdgas		568.434	540.917	473.262	467.883	479.465	493.318	472.972
Strom		605.247	563.613	550.146	521.911	507.269	495.133	468.742
Energieträger		2012	2013	2014	2015	2016	2017	2018

Tabelle 9 Treibhausgasemissionen -Energieträger 2012-2018

7. Zusammenfassung der Bilanzergebnisse

Im Folgenden sind die wichtigsten Ergebnisse der Energie- und Treibhausgasbilanz der Stadt Mülheim an der Ruhr zusammengefasst. Hierbei wird auch Bezug genommen auf den Energetischen Stadtentwicklungsplan 2015.

Im Zeitraum 2012 bis 2018 haben sich die pro Kopf Emissionen um 2,18t $CO_{2\ddot{a}q}/a$ vermindert und liegen nach neuesten Berechnungen bei 8,58 $CO_{2\ddot{a}q}/a$ pro Einwohner. Hierzu tragen neben der Industrie mit -1,6 $CO_{2\ddot{a}q}$ /EW auch der Sektor der privaten Haushalte 0,50 $CO_{2\ddot{a}q}$ /EW sowie die kommunale Verwaltung mit 0,11 $CO_{2\ddot{a}q}$ /EW bei.

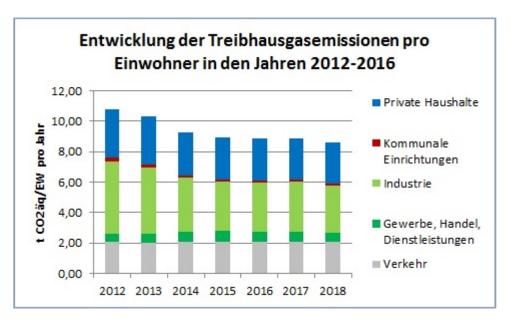


Abbildung 15 Entwicklung der Treibhausgasemissionen pro Einwohner 2012-2018

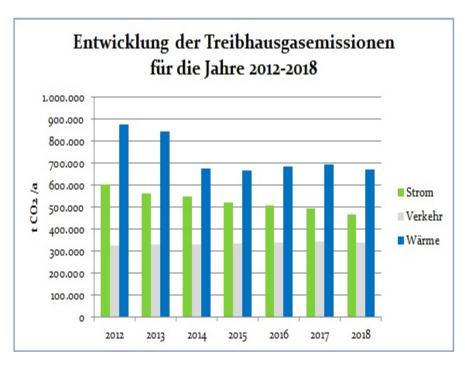


Abbildung 16 Entwicklung der Treibhausgasemissionen-Sektoral 2012-2018

Bezogen auf die einzelnen Energieträger sind im Mülheimer Stadtgebiet Strom und Erdgas die hauptsächlichen Verursacher der Treibhausgasemissionen, gefolgt von Diesel, Heizöl und Benzin. Alle anderen Energieträger sind demgegenüber bislang vergleichsweise unbedeutend. In Abb.16 zeigt die unterschiedliche Entwicklung bei den Treibhausgasemissionen aus

Strom -136.505 t CO2äq/a

Wärme -205.059 t CO2äq/a

Verkehr +14.249 t CO2äq/a

Im Gegensatz zu den Sektoren Strom und Wärme führen der technische Fortschritt und die zunehmende Effizienz im Verkehr bislang nicht zu einer ablesbaren Verringerung des Energiebedarfes und der damit verbundenen Treibhausgasemissionen. Die Verkehrszunahme und vor allem die im Bereich der Neuzulassungen von PKW immer stärkeren und größeren Fahrzeuge haben in den vergangenen Jahren einem möglichen Effizienzgewinn entgegengewirkt. Daraus ergeben sich zwei Aspekte: Zum einen ist hier der Handlungsbedarf besonders groß und zum anderen sind die Maßnahmen, die Projekte und die Argumentation der Vergangenheit deutlich auf ihre Wirksamkeit zu hinterfragen, denn letztlich besteht hier beachtliches Potenzial.

Insgesamt haben sich die Treibhausgas-Emissionen im Betrachtungszeitraum deutlich und zwar um 18,1 Prozent vermindert. Die stärkten Reduzierungen sind dem Sektor Industrie in absoluten Werten wie auch prozentual zuzuschreiben. Auch bei der kommunalen Verwaltung konnte anteilig eine hohe Reduzierung der Treibhausgasemissionen erzielt werden. Gestiegen sind die Treibhausgas-Emissionen beim Verkehr um 4 Prozent und im Sektor Gewerbe, Handel und Dienstleistung um 7 Prozent.

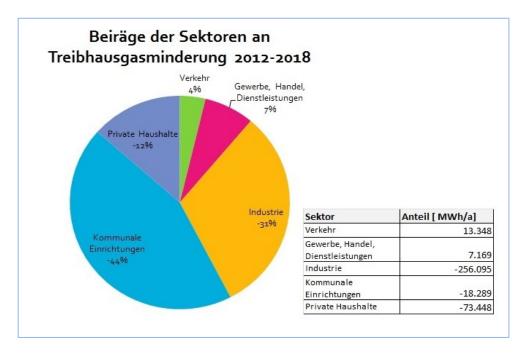


Abbildung 17 Beiträge der Sektoren an Treibhausgasminderung 2012-2018

Die Stromgewinnung aus Erneuerbaren Energien (Wasser-, Wind-, Biogasanlagen und Photovoltaik) beläuft sich im Jahr 2018 auf 68.782 MWh. Der Anteil liegt nach neueren Berechnung bei 9,4 Prozent bezogen auf den Gesamtstrombezug im Stadtgebiet. Die nachfolgende Abbildung 18 zeigt die Entwicklung ab dem Jahr 2000.

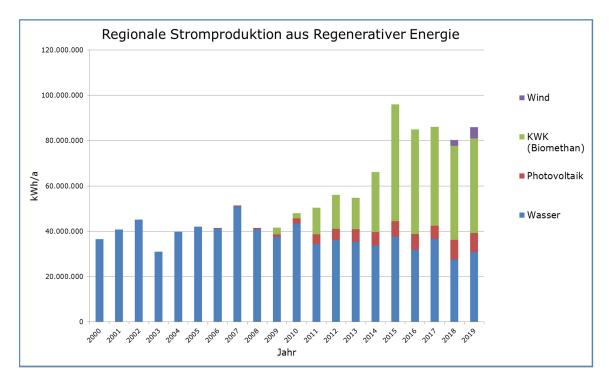


Abbildung 18 Bezugsdaten Westenergie AG und verschiedene Erzeuger ohne EEG Einspeisung

Erneuerbare Wärme hat einen Anteil von 3,4 Prozent am Gesamtwärmebedarf im Stadtgebiet und wird hauptsächlich in Blockheizkraftwerken aus Biomethan erzeugt.

8. Fazit und Ausblick

Mülheim an der Ruhr hat seine Ziele, so wie sie im Klimabündnis bislang festgelegt waren bis 2018 in Summe weitgehend erreicht. Hinsichtlich der Beiträge der einzelnen Sektoren ist das Bild differenzierter. Der überwiegende Anteil an der Reduktion der Treibhausgasemissionen ist dem Industriesektor zu zuschreiben, der zur Produktion sehr großen Mengen an Wärme aus Strom und Erdgas verwendet. Auch im Sektor der Privaten Haushalte ist auf niedrigem Niveau eine positive Entwicklung hin zu weniger Emissionen dokumentiert. Weitere Erfolge erfordern deutlichere Reduzierungen der Treibhausgasemissionen der Privaten Haushalte. Der Sektor Verkehr hat bislang keinen Beitrag zur Minderung der Treibhausgasemissionen geleistet, wegen seiner Bedeutung mit einem Anteil von rund 24 Prozent wird dies eine große Herausforderung der Zukunft sein

Nun gilt es, die vorliegenden Bilanzierungsergebnisse zu nutzen und hieraus Szenarien zur Erreichung einer Klimaneutralität für Mülheim an der Ruhr abzuleiten. Das bisherige Ziel ergab sich aus den Verpflichtungen des Klima-Bündnis alle fünf Jahre die Emissionen um zehn Prozent gegenüber 1990 zu senken und langfristig bis 2050, die Pro-Kopf-Emissionen auf 2,5 Tonnen CO2-Emissionen pro Jahr zu reduzieren. Diese Ziele sind allein vor dem Hintergrund des Pariser Klima Abkommens von 2015 und den nationalen Klimaschutzzielen überholt und werden auch durch das Klima-Bündnis neu diskutiert.

Unter der Berücksichtigung des neu definierten Zeithorizonts 2035 ist die Zielvorstellung auf Basis einer aktuellen Treibhausgasbilanz neu zu klären und den Sektoren zuzuordnen. Als Startbilanz hierzu wird das Bilanzjahr 2018 verwendet. Als Ziel für 2035 (Klimaneutralität) wird ein Wert von 2,5t $CO_{2\ddot{a}q.}$ /Person angenommen, der im Weiteren noch zu diskutieren sein wird.

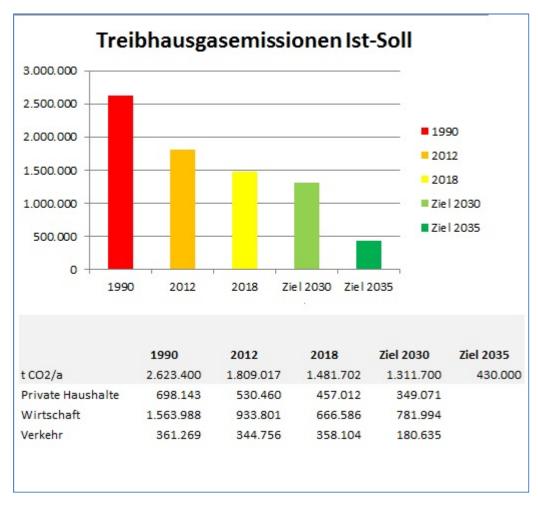


Abbildung 19 Treibhausgasemissionen Mülheim sn der Ruhr- Startbilanz 1990-Ziel 2035

Der Sektor Verkehr ist weiterhin eine große Herausforderung. Bisher konnte noch keine Trendwende erreicht werden. Hier sind in den nächsten Jahren verstärkte Anstrengungen notwendig. Möglichkeiten zur Bearbeitung dieser Herausforderung bietet die Förderung des Umstiegs vom motorisierten Individualverkehr, beispielsweise auf den öffentlichen Perso-

nenverkehr sowie die Förderung alternativer Mobilitätsformen und -konzepte, beispielsweise den Radverkehrsausbau, das Car-Sharing, und die verstärkte Nutzung von E-Mobilität.

Als problematisch wird sich aus der heutigen Perspektive auch der hohe Anteil an Heizungen erweisen, die mit fossilem Erdgas oder Flüssiggas betrieben werden. Um 2050 klimaneutral zu sein, darf man 2025 die letzte Gasheizung einbauen, wenn man von 25 Jahren Lebensdauer ausgeht. Die alten Gasheizungen sind zum Teil aber noch länger in Betrieb, teilweise 30 Jahre und mehr. Dann dürfte man also dieses Jahr die Letzte einbauen.

Um kontinuierlich auf die kommunalen Klimaschutzziele hinzuwirken, ist es notwendig, die Klimaschutzaktivitäten zu verstetigen und zu intensivieren. Dies dient letztendlich dazu, die Zielvorgabe eines weitestgehend treibhausgasneutralen Stadtgebietes zu erreichen.